Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165034

RESUMO

The infertility of many couples rests on an enigmatic dysfunction of the man's sperm. To gain insight into the underlying pathomechanisms, we assessed the function of the sperm-specific multisubunit CatSper-channel complex in the sperm of almost 2,300 men undergoing a fertility workup, using a simple motility-based test. We identified a group of men with normal semen parameters but defective CatSper function. These men or couples failed to conceive naturally and upon medically assisted reproduction via intrauterine insemination and in vitro fertilization. Intracytoplasmic sperm injection (ICSI) was, ultimately, required to conceive a child. We revealed that the defective CatSper function was caused by variations in CATSPER genes. Moreover, we unveiled that CatSper-deficient human sperm were unable to undergo hyperactive motility and, therefore, failed to penetrate the egg coat. Thus, our study provides the experimental evidence that sperm hyperactivation is required for human fertilization, explaining the infertility of CatSper-deficient men and the need of ICSI for medically assisted reproduction. Finally, our study also revealed that defective CatSper function and ensuing failure to hyperactivate represents the most common cause of unexplained male infertility known thus far and that this sperm channelopathy can readily be diagnosed, enabling future evidence-based treatment of affected couples.


Assuntos
Infertilidade Masculina , Sêmen , Criança , Humanos , Masculino , Sêmen/fisiologia , Canais de Cálcio/genética , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Infertilidade Masculina/terapia , Infertilidade Masculina/genética , Fertilização In Vitro , Fertilização/fisiologia
2.
EMBO J ; 39(4): e102363, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31957048

RESUMO

Navigation of sperm in fluid flow, called rheotaxis, provides long-range guidance in the mammalian oviduct. The rotation of sperm around their longitudinal axis (rolling) promotes rheotaxis. Whether sperm rolling and rheotaxis require calcium (Ca2+ ) influx via the sperm-specific Ca2+ channel CatSper, or rather represent passive biomechanical and hydrodynamic processes, has remained controversial. Here, we study the swimming behavior of sperm from healthy donors and from infertile patients that lack functional CatSper channels, using dark-field microscopy, optical tweezers, and microfluidics. We demonstrate that rolling and rheotaxis persist in CatSper-deficient human sperm. Furthermore, human sperm undergo rolling and rheotaxis even when Ca2+ influx is prevented. Finally, we show that rolling and rheotaxis also persist in mouse sperm deficient in both CatSper and flagellar Ca2+ -signaling domains. Our results strongly support the concept that passive biomechanical and hydrodynamic processes enable sperm rolling and rheotaxis, rather than calcium signaling mediated by CatSper or other mechanisms controlling transmembrane Ca2+ flux.


Assuntos
Hidrodinâmica , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Masculino , Camundongos , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismo
3.
Biochemistry ; 46(10): 2899-908, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17298035

RESUMO

LEDGF/p75 is known to enhance the integrase strand transfer activity in vitro, but the underlying mechanism is unclear. Using an integrase assay with a chemiluminescent readout adapted to a 96-well plate format, the effect of LEDGF/p75 on both the 3'-processing and strand transfer steps was analyzed. Integrase inhibitors of the strand transfer reaction remained active in the presence of LEDGF/p75, but displayed 3- to 7-fold higher IC50 values. Our analyses indicate that, in the presence of 150 nM LEDGF/p75, active integrase/donor DNA complexes were increased by 5.3-fold during the 3'-processing step. In addition, these integrase/donor DNA complexes showed a 4.5-fold greater affinity for the target DNA during the subsequent strand transfer step. We also observed a 3.7-fold increase in the rate constant of catalysis of the strand transfer step when 150 nM LEDGF/p75 was present during the 3'-processing step. In contrast, when LEDGF/p75 was added at the beginning of the strand transfer step, no increase in either the concentration of active integrase/donor DNA complex or its rate constant of strand transfer catalysis was observed. This observation suggested that the integrase/donor DNA formed in the absence of LEDGF/p75 became refractory to the stimulatory effect of LEDGF/p75. Instead, this LEDGF/p75 added at the start of the strand transfer step was able to promote the formation of a new cohort of active integrase/donor DNA complexes which became functional with a delay of 45 min after LEDGF/p75 addition. We propose a model whereby LEDGF/p75 can only bind integrase before the latter binds donor DNA whereas donor DNA can engage either free or LEDGF/p75-bound integrase.


Assuntos
DNA/metabolismo , Integrase de HIV/metabolismo , HIV-1/enzimologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Substâncias Macromoleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...